

After the crack opening displacement reaches 200 microns, the rate of water permeability increases steadily. When the crack opening displacement increases from 50 microns to about 200 microns, concrete permeability increases rapidly. When a specimen is loaded to have a crack opening displacement smaller than 50 microns prior to unloading, the crack opening has little effect on concrete permeability.


The preliminary results indicate that crack openings generally accelerate water flow rate in concrete. The permeability of cracked concrete is evaluated by water permeability tests. Sequential crack patterns with different crack widths are viewed under a microscope. In this study, feedback controlled splitting tests are introduced to generate crack width-controlled concrete specimens. The present work studies the relationship between crack characteristics and concrete permeability. The increase in concrete permeability due to the progression of cracks allows more water or aggressive chemical ions to penetrate into the concrete, facilitating deterioration. Cracks in concrete generally interconnect flow paths and increase concrete permeability.
